Recent Publication

September 2009

On the change in bacterial size and magnetosome features for Magnetospirillum magnetotacticum (MS-1) under high concentrations of zinc and nickel
S. Kundu et. al., Biomaterials, 30, 4211 (2009)

Quick Links

Welcome to Tweezer@Physics
Biophysics Lab III

In the forthcoming decade, the ability to sense and detect the state of biological system and living organisms optically, electrically and magnetically will be completely transformed by developments in material physics. Optical tweezer is a powerful research tool in different areas such as biomaterials, biophysics, molecular biology and nanomaterials. It provides an opportunity to manipulate, detect and apply optical forces on different types of plant and animal cells, bacteria, viruses and even on single biomolecules. The new generation optical tweezer coupled with force calibration system is being used for nano-positioning and force measurement even at piconewton level.

The optical tweezers technique has applications in various areas including cell bio-sensors and cell micro-chip. Different mechanical aspects of single DNA molecules are studied by the controlled light force in optical trap. The ability to apply piconewton level forces to micron size particle is now routinely used to study molecular motion at the single molecular level. Rotation of RBC, bacteria such as E.coli, rotation of metal oxide microscopic particles inside the optical trap is being investigated.

The characteristic size, shape and specific alignment of magnetite crystals synthesized by magnetotactic bacteria is a highly coordinated process with precise control over magnetosome vesicle formation, uptake and transport of Fe, and magnetite biomineralization. Magnetosome membranes along with some specific membrane proteins regulate crystal nucleation and morphology of magnetite.